It tells you how many protons it has and because the number of protons =electrons it tells you also the number of electrons.
Answer:
The Coriolis effect is caused by the rotation of the earth around its own axis.
Explanation:
The Coriolis effect arises from the fact that different latitudes of the earth's surface rotate at different speeds. The path of wind on earth is deflected by the Coriolis effect. As things move over the earth, they meet different speed areas, which causes the Coriolis Effect to divert their route.
Thus, The Coriolis effect is caused by the rotation of the earth around its own axis.
1) We need to convert 12.0 g of H2 into moles of H2, and <span> 74.5 grams of CO into moles of CO
</span><span>Molar mass of H2: M(H2) = 2*1.0= 2.0 g/mol
Molar mass of CO: M(CO) = 12.0 +16.0 = 28.0 g/mol
</span>12.0 g H2 * 1 mol/2.0 g = 6.0 mol H2
74.5 g CO * 1 mol/28.0 g = 2.66 mol CO
<span>2) Now we can use reaction to find out what substance will react completely, and what will be leftover.
CO + 2H2 -------> CH3OH
1 mol 2 mol
given 2.66 mol 6 mol (excess)
How much
we need CO? 3 mol 6 mol
We see that H2 will be leftover, because for 6 moles H2 we need 3 moles CO, but we have only 2.66 mol CO.
So, CO will react completely, and we are going to use CO to find the mass of CH3OH.
3) </span>CO + 2H2 -------> CH3OH
1 mol 1 mol
2.66 mol 2.66 mol
4) We have 2.66 mol CH3OH
Molar mass CH3OH : M(CH3OH) = 12.0 + 4*1.0 + 16.0 = 32.0 g/mol
2.66 mol CH3OH * 32.0 g CH3OH/ 1 mol CH3OH = 85.12 g CH3OH
<span>
Answer is </span>D) 85.12 grams.
In a titration, for an acid to neutralize a base, at the equivalence point, there should be an equal number of moles of H+ and OH-.
Moles of OH- can be found by multiplying the concentration of the base by the volume. (You will need to keep in mind the stoichimetric coefficients if the strong base is Ca(OH)₂, Ba(OH)₂, or Sr(OH)₂.
Moles of OH- = moles of H+
(0.253 M) * 0.005 L = 0.01000 L * c
c = 0.1265 M
The concentration of HBr is 0.127 M.
The alkali metals, which occupy group 1 of the periodic table. This is because the valence shells of these elements have only 1 electron, so easily form an ionic bond with a non-metal compound by donating this. A cation is formed by this donation, since there is one fewer electron orbiting the nucleus than there is in the atomic form - conversely an anion is formed when an atom gains an extra electron to become negatively charged.