Answer:
jfjcgufnfhfufm TV fifnricnrhkddufnfif km fgkfkvntfmrugrhfifnh r
Answer:
120 Ns
Explanation:
The impulse exerted on an object is given by:

where
F is the force applied
t is the time taken
In this problem, we have:
F = 40 N
t = 3.0 s
So, the impulse acting on the boat is

Answer:
Kinematics
given,
time (t)=100 s, distance (s)=1 km=1000 m
V
b
=10m/s (relative speed r.p to bus)
Velocity (v)=
time
distance
=
100
1000
V
s
= velocity of scooter
V
b
→ Velocity of bus
V=V
s
−V
b
→As we know
10=V
s
−10
20=V
s
V
s
=20 m/s
Velocity with which scooterist
should chase the bus →20 m/s
Explanation:
I Hope you Guys Understood
please mark as Brainliest....
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m