Answer:
v₁ = 3.5 m/s
v₂ = 6.4 m/s
Explanation:
We have the following data:
m₁ = mass of trailing car = 400 kg
m₂ = mass of leading car = 400 kg
u₁ = initial speed of trailing car = 6.4 m/s
u₂ = initial speed of leading car = 3.5 m/s
v₁ = final speed of trailing car = ?
v₂ = final speed of leading car = ?
The final speed of the leading car is given by the following formula:

<u>v₂ = 6.4 m/s</u>
The final speed of the leading car is given by the following formula:

<u>v₁ = 3.5 m/s</u>