Answer:
a. 
b. 
Explanation:
I have attached an illustration of a solid disk with the respective forces applied, as stated in this question.
Forces applied to the solid disk include:

Other parameters given include:
Mass of solid disk, 
and radius of solid disk, 
a.) The formula for determining torque (
), is 
Hence the net torque produced by the two forces is given as a summation of both forces:

b.) The angular acceleration of the disk can be found thus:
using the formula for the Moment of Inertia of a solid disk;

where
= Mass of solid disk
and
= radius of solid disk
We then relate the torque and angular acceleration (
) with the formula:

Answer:
no ... hahahha! but I know every boys wait for the day when their heart beat is faster than normal ever in life
KE = 1/2 mv^2 is the relationship betwee mass and kinetic energy
Answer:
38,437.5
Explanation:
Density(d)= 102.5g/ml
Volume (v)=375ml
Mass(m) = ?
D =m/v
102.5= m/375
102.5*375=m
38,437.5=m
therefore Mass = 38,437.5g/ml.
Answer:
a) E = -4 10² N / C
, b) x = 0.093 m, c) a = 10.31 m / s², θ=-71.9⁰
Explanation:
For that exercise we use Newton's second Law, in the attached we can see a free body diagram of the ball
X axis
-
= m a
Axis y
- W = 0
Initially the system is in equilibrium, so zero acceleration
Fe =
T_{y} = W
Let us search with trigonometry the components of the tendency
cos θ = T_{y} / T
sin θ =
/ T
T_{y} = cos θ
= T sin θ
We replace
q E = T sin θ
mg = T cosθ
a) the electric force is
= q E
E =
/ q
E = -0.032 / 80 10⁻⁶
E = -4 10² N / C
b) the distance to this point can be found by dividing the two equations
q E / mg = tan θ
θ = tan⁻¹ qE / mg
Let's calculate
θ = tan⁻¹ (80 10⁻⁶ 4 10² / 0.01 9.8)
θ = tan⁻¹ 0.3265
θ = 18
⁰
sin 18 = x/0.30
x =0.30 sin 18
x = 0.093 m
c) The rope is cut, two forces remain acting on the ball, on the x-axis the electric force and on the axis and the force gravitations
X axis
= m aₓ
aₓ = q E / m
aₓ = 80 10⁻⁶ 4 10² / 0.01
aₓ = 3.2 m / s²
Axis y
W = m
a_{y} = g
a_{y} = 9.8 m/s²
The total acceleration is can be found using Pythagoras' theorem
a = √ aₓ² + a_{y}²
a = √ 3.2² + 9.8²
a = 10.31 m / s²
The Angle meet him with trigonometry
tan θ = a_{y} / aₓ
θ = tan⁻¹ a_{y} / aₓ
θ = tan⁻¹ (-9.8) / 3.2
θ = -71.9⁰
Movement is two-dimensional type with acceleration in both axes