Answer:
Enriched uranium-
Explanation:
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written ²³⁵U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (²³⁸U with 99.2739–99.2752% natural abundance), uranium-235 (²³⁵U, 0.7198–0.7202%), and uranium-234 (²³⁴U, 0.0050–0.0059%). U is the only nuclide existing in nature (in any appreciable amount) that is fissile with thermal neutrons.
Answer:
A)
1. Reaction will shift rightwards towards the products.
2. It will turn green.
3. The solution will be cooler..
B) It will turn green.
Explanation:
Hello,
In this case, for the stated equilibrium:

In such a way, by thinking out the Le Chatelier's principle, we can answer to each question:
A)
1. If potassium bromide, which adds bromide ions, is added more reactant is being added to the solution, therefore, the reaction will shift rightwards towards the products.
2. The formation of the green complex is favored, therefore, it will turn green.
3. The solution will be cooler as heat is converted into "cold" in order to reestablish equilibrium.
B) In this case, as the heat is a reactant, if more heat is added, more products will be formed, which implies that it will turn green.
Regards.
Its a 50% chance that approx 1/2 of the pennies will land on tails. The next toss will result the same. and so on and so on. showing how a reaction would slowly eliminate 1/2 of the remaining lives per reaction, until nothing is left. I think it is a good stimulation.
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!