Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
<span>Even though the Sun has a greater mass than Earth, the Moon orbits Earth because it's closer to the Earth than to the Sun. Because of this proximity between the Earth and the Moon, the Earth has a stronger gravitational pull than the Sun does. Furthermore, the Earth's mass is 81 times that of the Moon, and so at this proximity, it is more than able to overpower what pull the Sun exerts on the Moon.</span>
<span>When the difference between two results is larger than the estimates error, the result is</span>
Regions in the milky way where density waves have caused gas clouds to crash into each other are called clumps.Clumps are molecular clouds (interstellar clouds) with higher density,where lots of dust and gs cores resides. These clouds are the beginning of stars.
450 J / 3 s = 150 J/s = 150 watts.