1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
1 year ago
10

Compare and contrast the energy transfer of a roller coaster to that of a pendulum

Physics
1 answer:
Softa [21]1 year ago
8 0

When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.

<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>

The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.

<h3>What is the energy transfer in a pendulum?</h3>

As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.

So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.

Learn more about energy here: brainly.com/question/13881533

#SPJ1

You might be interested in
Un niño amarra una soga a una piedra, y la hace girar como en la gráfica. la piedra realiza un M.C.U, girando con una rapidez de
inessss [21]

Answer:

\Delta \theta = 56\,rad

\Delta \theta \approx 3208.564^{\circ}

Explanation:

El ángulo barrido en el intervalo de tiempo dado es (The covered angle in the given time interval is):

\Delta \theta = \omega \cdot \Delta t

\Delta \theta = \left(14\,\frac{rad}{s} \rjght)\cdot (4\,s)

\Delta \theta = 56\,rad

\Delta \theta \approx 3208.564^{\circ}

4 0
3 years ago
Sunglasses that reduce glare take advantage of which kind of wave
marysya [2.9K]

Answer:

It should be option B polarization

6 0
3 years ago
Read 2 more answers
An oceanographer is studying how the ion concentration in seawater depends on depth. She makes a measurement by lowering into th
Black_prince [1.1K]

Answer:

a)  R = ρ₀ L /π(r_b² - R_a²) , b)  ρ₀ = V / I    π (r_b² - R_a²) / L

Explanation:

a) The resistance of a material is given by

          R = ρ l / A

where ρ is the resistivity, l is the length and A is the area

the length is l = L and the resistivity is ρ = ρ₀

the area is the area of ​​the cylindrical shell

           A = π r_b² - π r_a²

           A = π (r_b² - r_a²)

we substitute

         R = ρ₀ L /π(r_b² - R_a²)

b) The potential difference is related to current and resistance by ohm's law

         V = i R

         

we subsist the expression of resistance

          V = I ρ₀ L /π (r_b² - R_a²)

           ρ₀ = V / I    π (r_b² - R_a²) / L

6 0
3 years ago
What do you mean by resistance of conductor?state it’s unit.
dalvyx [7]

Answer:

its unit is Ohm

Explanation:

Resistance means material which resist the passing current  through it and the value of resistance says how much the material is resisting the current and it temperature dependent and the unit is Ohm.

7 0
3 years ago
Vector A has a magnitude of 50 units and points in the positive x direction. A second vector, B , has a magnitude of 120 units a
Alex Ar [27]

A) Vector A

The x-component of a vector can be found by using the formula

v_x = v cos \theta

where

v is the magnitude of the vector

\theta is the angle between the x-axis and the direction of the vector

- Vector A has a magnitude of 50 units along the positive x-direction, so \theta_A = 0^{\circ}. So its x-component is

A_x = A cos \theta_A = (50) cos 0^{\circ}=50

- Vector B has a magnitude of 120 units and the direction is \theta_B = -70^{\circ} (negative since it is below the x-axis), so the x-component is

B_x = B cos \theta_B = (120) cos (-70^{\circ})=41

So, vector A has the greater x component.

B) Vector B

Instead, the y-component of a vector can be found by using the formula

v_y = v sin \theta

Here we have

- Vector B has a magnitude of 50 units along the positive x-direction, so \theta_A = 0^{\circ}. So its y-component is

A_y = A sin \theta_A = (50) sin 0^{\circ}=0

- Vector B has a magnitude of 120 units and the direction is \theta_B = -70^{\circ}, so the y-component is

B_y = B sin \theta_B = (120) sin (-70^{\circ})=-112.7

where the negative sign means the direction is along negative y:

So, vector B has the greater y component.

8 0
3 years ago
Other questions:
  • ). with the input voltage range set at +/- 500mv, what is the smallest difference in voltage that can be resolved? show your cal
    11·1 answer
  • Compare and contrast scientific theory and scientific law
    13·1 answer
  • An astronaut on a distant planet wants to determine its acceleration due to gravity. the astronaut throws a rock straight up wit
    5·1 answer
  • What is the force on an object that goes from 35 m/s to 85 m/s in 20 seconds and has a mass of 148 kg
    7·1 answer
  • A paper airplane is thrown horizontally with a velocity of 20 mph. The plane is in the air for 7.63 s before coming to a standst
    5·1 answer
  • When a puddle of water evaporates, does the water change into a new kind of matter
    12·1 answer
  • As the temperature of a sample of gas decreases, the kinetic energy of the particles _____.
    14·1 answer
  • Pedro is planning to model how changes in weather affect evaporation from lakes for his first experiment he wants to test how hu
    5·1 answer
  • What are the main pieces of evidence we use to differentiate a black hole binary from a neutron star binary
    5·1 answer
  • A circuit is constructed with six resistors and two batteries as shown. The battery voltages are V1 = 18 V and V2 = 12 V. The po
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!