At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769
Answer:
ZnS
Explanation:
1. Number of Zn atoms
4 internal atoms = 4 Zn atoms
2. Number of S atoms
8 corners × ⅛ S atom/corner + 6 faces × ½ S atom/face = 1 S atom + 3 S atoms = 4 S atoms
3. Empirical formula
The atomic ratio is
4Zn:4S = 1Zn:1S
The empirical formula is ZnS.
This can be done through electrolysis. Electrolysis is the separation of a substance into two or more substances that may differ from each other and from the original substance by passing an electric current through a solution that contains ions.
In the case of copper, we use a copper (II) sulphate solution which we put in a large beaker. The impure copper will be used as the positive electrode (anode) and for the negative electrode (cathode) will be a bar of pure copper.
When the electric current is switched on, the bar of pure copper which is the cathode increases greatly in size as copper ions leave the anode of impure copper and attach to the cathode. The anode becomes smaller and smaller as it loses copper ions until all that is left of it is impurities in form of a sludge beneath it.
Answer:
It would take 3.11 J to warm 3.11 grams of gold
Explanation:
Step 1: Data given
Mass of gold = 3.11 grams
Temperature rise = 7.7 °C
Specific heat capacity of gold = 0.130 J/g°C
Step 2: Calculate the amount of energy
Q = m*c*ΔT
⇒ Q = the energy required (in Joules) = TO BE DETERMINED
⇒ m = the mass of gold = 3.11 grams
⇒ c = the specific heat of gold = 0.130 J/g°C
⇒ ΔT = The temperature rise = 7.7 °C
Q = 3.11 g * 0.130 J/g°C * 7.7 °C
Q = 3.11 J
It would take 3.11 J to warm 3.11 grams of gold
I think the best answer is b): it contains particles that can settle out.
The definition of suspension is a heterogeneous (that is same in all parts) mixture that contains particles that could undergo sedimentation (settle down) - this definition is close to b). It should not matter whether those particles are nutrients( so A or C are not good answers).