Clearly volume will INCREASE almost sevenfold, as we would expect if we reduce the pressure. ... Assuming this is an ideal gas, and that the number of molecules *n* of this gas remains constant, and given that the temperature is also ... That is, in these conditions, pressure times volume is constant :
It is sharing (i could be wrong so be cautious of your answer) <span />
Answer:
6.50 g of Hydrogen
Explanation:
We know that in every 20.0g of sucrose, there are 1.30g of hydrogen.
We now have 100.0g of sucrose. 100.0g is 5x larger than the 20.0g sample, which is a 5 : 1 ratio. Applying this ratio to the amount of hydrogen, we would have 5*1.3g of hydrogen in the 100.0g of sucrose.
5*1.3 = 6.5, so our answer is that there are 6.50g of hydrogen in 100.0g of sucrose.
Hope this helps!
The answer is B. Suspension. Suspension mixtures are composed of two or more materials mixed together wherein the solute particles are usually larger than those found in a solution or colloid. In cases of solid-fluid suspension mixtures, the solid solute particles tend to settle at the bottom of the mixture after some time.
Here is a picture of which shows you how many valence electrons are in the Lewis structure of xeo4