The answer is D. This is because liquids take up the shape of the container they are in, so it is never definite. Where as solids stay the same shape.
Answer:
1 mole of iron (Fe) = 56 g (molar mass)
Since 56 g of iron = 1 mol.
Therefore, 112 g of iron= 1/ 56 ×112 mol = 2 mol.
Explanation:
Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Answer:
This addition reaction yields 3-BromoPentane and 2-BromoPentane.
Explanation: The reaction is an addition reaction that follows the Markonikoff's principle engaging the electrophillic addition mechnism with electrophile having no lone pair so rearrangement of carbonation is possible. It yields two possible products.