Answer:
C. greater than D, but less than 2D
Explanation:
The amount of potential energy in the system is a function of the compression of the spring. That is the same for both masses.
The potential energy is transferred to kinetic energy when the spring is released. The kinetic energy is jointly proportional to the mass and the square of the velocity. That is, the velocity is inversely proportional to the square root of the mass, for the same kinetic energy.
The horizontal distance traveled will be proportional to the launch velocity. So a halving of the mass will increase the velocity by a factor of ...
v2 = v1·√(1/(1/2)) = v1·√2
This means the second mass will land at a distance of about D√2, a value ...
greater than D but less than 2D.
Answer:
400 N
Explanation:
Change of Kinetic Energy to Friction Wok
∆KE = W
½ x m x (v(5)² - v(3)²) = f x d
½ x 500 x (5² - 3²) = f x 10
250 x (25 - 9) = f x 10
25 x 16 = f
f = 400 N
Answer:
honey mustard or chick fil a sauce their special sauce
Explanation:
Answer:
i dont really nnow the answer so byee
Answer:
The frequency does not depend on the amplitude for any (ideal) mechanical or electromagnetic waves.
In electromagnetism we have that the relation is:
Velocity = wavelenght*frequency.
So the amplitude of the wave does not have any effect here.
For a mechanical system like an harmonic oscillator (that can be used to describe almost any oscillating system), we have that the frequency is:
f = (1/2*pi)*√(k/m)
Where m is the mass and k is the constant of the spring, again, you can see that the frequency only depends on the physical properties of the system, and no in how much you displace it from the equilibrium position.
This happens because as more you displace the mass from the equilibrium position, more will be the force acting on the mass, so while the "path" that the mass has to travel is bigger, the mas moves faster, so the frequency remains unaffected.