The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
<span>Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.</span>
Answer:
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.