The distance it falls is given by
x = (1/2)at^2
where a = acceleration due to gravity = 9.8 m/s^2
x = (1/2)(9.8)(18)^2
x = 1587.6 m
The answer is 1587.6 meters
Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 
Answer:
Block A will have a final charge of 3.5nC.
Explanation:
This is because at the point of contact with Block B, which is electrically positive, the electrons in Block A will be attracted to the excess 'unpaired' protons in block B. Hence, the electrons will flow into Block B causing unpaired protons to remain in Block A.
This process is called Charging by Conduction.
This charging process will continue until the charges are evenly distributed between both objects.
In case you're wondering, "<em>how's all this possible within a few seconds</em>?", remember that electrons travel very fast and so, this process is a rather rapid one.
Answer:
The wavelength = 0.3333 meters at 900 MHz, therefore, = /4 = 0.08333 meters.
Answer:
4
Explanation:
We know that intensity I = P/A where P = power and A = area through which the power passes through.
Now, let the initial intensity of the speaker be I₀ and its initial power be P₀. Since the intensity is increased by a factor of 4, the new intensity be I and new power be P.
So, I = P/A and I₀ = P₀/A
Now, if I = 4I₀,
P/A = 4P₀/A
P = 4P₀
Now, energy E = Pt, where t = time. So, P = E/t and P₀ = E₀/t
Substituting P and P₀ into the equation, we have
P = 4P₀
E/t = 4E₀/t
E = 4E₀
Since the energy is four times the initial energy, the energy output increases by a factor of 4.