Answer:
Explanation:
If the initial velocity is U
Then the horizontal component of the velocity is
Ux= Ucosθ
Then the range for a projectile is give as
R=Ux.t
Where t is the time of flight
The time of flight is given as
t=2USinθ/g
Therefore,
R=Ux.t
R=UCosθ.2USinθ/g
R=U^2×2SinθCosθ/g
Then, from trigonometric ratio
2SinθCosθ= Sin2θ
R=U^2Sin2θ/g
Given that θ=32° and g=9.81m/s^2
Then
R=U^2Sin2×32/9.81
R=U^2Sin64/9.81
R=0.0916U^2
Then, range is given by R=0.0916U^2
A=0.0916U^2.
T
The box is at a distance A from the point of projection. Then the range R=A
R=0.0916U^2
A=0.0916U^2
Then,
U^2=A/0.0916
U^2=10.915A
Then the initial velocity should be
U=√10.915A
U=3.3√A
Answer:
Mass
Explanation:
Inertia is essentially an object's tendency to stay in motion or at rest unless it is forced to do otherwise (pun intended). It only makes sense to me that mass would best quantify an object's inertia, because an object with more mass would be harder to move and/or stop from moving.
Answer:
The value is 
Explanation:
From the question we are told that
The work input is
The heat delivered is 
The value of A is A = 14
The value of B is B = 72
Generally the efficiency of the heat engine is mathematically represented as

Here
is the total out energy produce by the heat engine and this is mathematically represented as

=> 
=> 
So

=> 
=> 
=> 
We have: F = m×a
Here, m = 90 Kg
a = 15 m/s²
Substitute their values into the expression:
F = 90 × 15
F = 1350 N
In short, Your Answer would be Option D
Hope this helps!
1.cool down
2.activity log
3.specific warm up
4.activities of daily living
5.planned exercise
6.general warm up