The average speed <em>appears to be</em> (distance) / (time) =
(length of the cable) / (time from when a pulse goes in until it comes out the other end) .
That's 1,200,000 meters/ 0.006 second = 2 x 10^8 = <em>2 hundred million m/sec</em>
That figure is about 66.7% of the speed of light in vacuum.
The reason I went through all of this detail was to point out that this is
NOT necessarily the speed of light in this glass, for two reasons.
1). The path of light through an optical fiber is not straight down the middle. In the original fibers of 20 or 30 years ago, the light bounced back and forth off the inside walls of the fiber, and zig-zagged its way along the length. In current modern fibers, it still zig-zags, but it's a more gentle, up-and-down curved path. In either case, the distance covered by the light inside the fiber is more than the straight length of the cable, and the time it takes it to come out the other end is more than its actual speed inside the glass would have meant if it could have traveled straight through the pipe.
2). This problem talks about an optical fiber that's 1,200km long. There is loss in optical fiber, and you're NOT going to get light all the way through a single piece of it that's something like 745 miles long. It takes electronic repeaters, "boosters", and regenerators every few miles to keep it going, and these devices add "latency" or time delay in the process of going through them. That delay in the electronics shows up as apparent delay through the fiber-optic cable, and it makes the speed through the glass appear to be slower than it actually is.
Matter is made of the particles are called atoms!
hope this helps!
Answer:
1.02 seconds
Explanation:
Initial velocity = u = 5 m/s
t = Time taken
s = Displacement travelled = 0
a = Acceleration due to gravity = -9.81 m/s² (negative sign due to direction)
Equation of motion

So, time taken to return to its initial position is 1.02 seconds
Answer:
He is being careless.
Explanation:
he is trying to "get rid" of one problem so he can tackle another. This is food though, and you have customers to serve. You also have to be careful about food poisoning.
Answer:
A ball rolls across a street and into a large soccer field
Explanation:
From Newton's first law of motion, a body at rest or uniform motion will continue to be at rest or uniform motion until and unless a net external force acts on it”. Suppose a block is kept on the floor, it will remain at rest until we apply some external force to it. Also, we know that it takes us more effort or force to move a heavy mass. This is directly related to a property known as Inertia. This law is also known as the law of inertia.