Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>
Answer:
29 L.
Explanation:
Hello!
In this case, considering that we are performing a conversion by which the time should be cancelled out to obtain liters, we first need to convert the seconds on bottom to hours and then the volume on top to liters, just a shown down below:

Which turns out 29 L with 2 significant figures.
Best regards!
Answer : The lewis dot structure includes the lone pair of electrons in any element and is helpful for defining the bond formation using the electrons.
In the molecule of HOI hydrogen is to the left of oxygen; oxygen is in middle and Iodine is at right of oxygen.
The picture is attached for better understanding.
TNT has the molecular formula: C7H5N3O6. And hence, when reacted in oxygen gas, you get what is known as <span>combustion</span> reaction. the reaction is: <span><span>C7</span><span>H5</span><span>N3</span><span>O6</span>+<span>O2</span>→C<span>O2</span>+<span>N2</span>+<span>H2</span><span>O</span></span>
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂