<h3>
Answer:</h3>
B) 4H₂(g) + O₂(g) ⟶ 2H₂O(l)
<h3>
Explanation:</h3>
- Chemical reactions occur when compounds or elements combine to form new compounds or other elements.
- Chemical reactions may be classified into various types which include synthesis reactions, replacement reaction, decomposition reactions, and precipitation reactions among others.
- In our case, we were supposed to identify a synthesis reaction.
- Thus, we need to know what is a synthesis reaction.
- A synthesis reaction is a reaction that occurs when two elements or small compounds combine to generate a large compound.
- In this case, B is the choice that shows a synthesis reaction where hydrogen gas combines with oxygen gas to yield water.
H2(g) +C2H4(g)→C2H6(g)
H-H +H2C =CH2→H3C-Ch3
2C -H bonds and one C-C bond are formed while enthalpy change (dH) of the reaction,
H-H: 432kJ/mol
C=C: 614kJ/mol
C-C: 413 kJ/mol
C-C: 347 kJ/mol
dH is equal to sum of the energies released during the formation of new bonds or negative sign, and sum of energies required to break old bonds or positive sign.
The bond which breaks energy is positive.
432+614 =1046kJ/mol
Formation of bond energy is negative
2(413) + 347 = 1173 kJ/mol
dH reaction is -1173 + 1046 =-127kJ/mol
Answer:
Molecular geometry Vsepr
According to VSEPR, the valence electron pairs surrounding an atom mutually repel each other; they adopt an arrangement that minimizes this repulsion, thus determining the molecular geometry. This means that the bonding (and non-bonding) electrons will repel each other as far away as geometrically possible.
Explanation:
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.
Calcium forms an ion with a positive 2 charge and chlorine forms an ion with a negative one charg, so the formula is <span>CaC<span>l2</span></span>
Group 1 metals and group 2 metals form positive ions by losing 1 and 2 electrons respectively. Non-metals in group 17 gain 1, group 16 gain 2 and group 15 gain 3. Elements which lose electrons form positive ions while elements that gain electrons form negative ions.
To write a formula, you must balance charges so the overall charge is zero. A simple way to do this is to swap the # of the ion's charge and make it the subscript of the other ion. However, leave off the number 1 and reduce to lowest whole number ratio.