1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GenaCL600 [577]
1 year ago
6

use the drop-down menu to complete the statement. the production of an electric current by a changing magnetic field is known as

.
Physics
1 answer:
Maslowich1 year ago
3 0

The production of an electric current by a changing magnetic field is known as electromagnetic induction.

The phenomenon when the current is produced due to changing magnetic field is given by Faraday.

And this phenomenon is called the electro-magnetic induction or magnetic induction since the electricity is generated due to the fluctuations or variance in the magnetic field.

To know more about Attention here:

brainly.com/question/22617549

#SPJ4

You might be interested in
Chase is trying to push a 120-kilogram boulder along the street. He applies a force of 1,115 newtons, and he does this over a di
lord [1]

Answer:

The work done is equal to zero = 0

Explanation:

Let us remember that the definition of physical work is given by the product of force by the displacement of the body.

Work=F*d\\\\where\\F= force [N]\\d=distance [m]\\replacing\\Work=1115*(0) = 0

4 0
3 years ago
What type of equilibrium is guaranteed by each condition of equilibrium
Ostrovityanka [42]

Answer: Conditions for equilibrium require that the sum of all external forces acting on the body is zero (first condition of equilibrium), and the sum of all external torques from external forces is zero (second condition of equilibrium). These two conditions must be simultaneously satisfied in equilibrium

Explanation: Hope this helped

5 0
3 years ago
Which object will have more inertia a 100kg rock a 5kg book a 60kg person or a 2000kg car
SSSSS [86.1K]
The formula for solving the inertia (I) is I=mr² where "m" represents the mass of an object and "r" represents the perpendicular distance to the rotation axis.
item 1= 100 kg rock
Item 2= 5kg book
item 3= 60kg person
item 4=2000kg car.

The answer is the last item which is a 2000kg car.
7 0
3 years ago
I will gib brainlyest or whatever.
astraxan [27]

Answer:

Range of the projectile: approximately 1.06 \times 10^{3}\; {\rm m}.

Maximum height of the projectile: approximately 80\; {\rm m} (approximately 45.0\; {\rm m} above the top of the cliff.)

The projectile was in the air for approximately 7.07\; {\rm s}.

The speed of the projectile would be approximately 155\; {\rm m \cdot s^{-1}} right before landing.

(Assumptions: drag is negligible, and that g = 9.81\; {\rm m\cdot s^{-1}}.)

Explanation:

If drag is negligible, the vertical acceleration of this projectile will be constantly a_{y} = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}. The SUVAT equations will apply.

Let \theta denote the initial angle of elevation of this projectile.

Initial velocity of the projectile:

  • vertical component: u_{y} = u\, \sin(\theta) = 153\, \sin(11.2^{\circ}) \approx 29.71786\; {\rm m\cdot s^{-1}}
  • horizontal component: u_{x} = u\, \cos(\theta) = 153\, \cos(11.2^{\circ}) \approx 150.086\; {\rm m\cdot s^{-1}}.

Final vertical displacement of the projectile: x_{y} = (-35)\; {\rm m} (the projectile landed 35\: {\rm m} below the top of the cliff.)

Apply the SUVAT equation v^{2} - u^{2} = 2\, a\, x to find the final vertical velocity v_{y} of this projectile:

{v_{y}}^{2} - {u_{y}}^{2} = 2\, a_{y}\, x_{y}.

\begin{aligned} v_{y} &= -\sqrt{{u_{y}}^{2} + 2\, a_{y} \, x_{y}} \\ &= -\sqrt{(29.71786)^{2} + 2\, (-9.81)\, (-35)} \\ &\approx (-39.621)\; {\rm m\cdot s^{-1}}\end{aligned}.

(Negative since the projectile will be travelling downward towards the ground.)

Since drag is negligible, the horizontal velocity of this projectile will be a constant value. Thus, the final horizontal velocity of this projectile will be equal to the initial horizontal velocity: v_{x} = u_{x}.

The overall final velocity of this projectile will be:

\begin{aligned}v &= \sqrt{(v_{x})^{2} + (v_{y})^{2}} \\ &= \sqrt{(150.086)^{2} + (-39.621)^{2}} \\ &\approx 155\; {\rm m\cdot s^{-1}} \end{aligned}.

Change in the vertical component of the velocity of this projectile:

\begin{aligned} \Delta v_{y} &= v_{y} - u_{y} \\ &\approx (-39.621) - 29.71786 \\ &\approx 69.3386 \end{aligned}.

Divide the change in velocity by acceleration (rate of change in velocity) to find the time required to achieve such change:

\begin{aligned}t &= \frac{\Delta v_{y}}{a_{y}} \\ &\approx \frac{69.3386}{(-9.81)} \\ &\approx 7.0682\; {\rm s}\end{aligned}.

Hence, the projectile would be in the air for approximately 7.07\; {\rm s}.

Also the horizontal velocity of this projectile is u_{x} \approx 150.086\; {\rm m\cdot s^{-1}} throughout the flight, the range of this projectile will be:

\begin{aligned}x_{x} &= u_{x}\, t \\ &\approx (150.086)\, (7.0682) \\ &\approx 1.06 \times 10^{3}\; {\rm m} \end{aligned}.

When this projectile is at maximum height, its vertical velocity will be 0. Apply the SUVAT equation v^{2} - u^{2} = 2\, a\, x to find the maximum height of the projectile (relative to the top of the 35\; {\rm m} cliff.)

\begin{aligned}x &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a} \\ &\approx \frac{0^{2} - 29.71786^{2}}{2\, (-9.81)} \\ &\approx 45.0\; {\rm m}\end{aligned}.

Thus, the maximum height of the projectile relative to the ground will be approximately 45.0\; {\rm m} + 35\; {\rm m} = 80\; {\rm m}.

5 0
1 year ago
In some cases fixture wires may be used for
zalisa [80]

You can use fixture wires: For installation in luminaires where they are enclosed and protected and not subject to bending and twisting and also can be used to connect luminaires to their branch circuit conductors.

<h3>What are some uses of fixture wires?</h3>

Fixture wires are flexible conductors that are used for wiring fixtures and control circuits. There are some special uses and requirements for fixture wires and no fixture can be smaller than 18 AWG

In modern fixtures, neutral wire is white and the hot wire is red or black. In some types of fixtures, both wires will be of the same color.

To know more about fixture wires, refer

brainly.com/question/26098282

#SPJ4

3 0
1 year ago
Other questions:
  • An object is at rest when it undergoes a constant acceleration of 13 m/s ^ 2 for 5.0 seconds. How far will it have traveled duri
    11·1 answer
  • Low-grade uranium ore contains a fraction of a percent (by weight) of uranium; very high-grade ore (as is found in some deposits
    12·1 answer
  • Design a circuit which takes two inputs and outputs a 1 if and only if the two inputs are the same signal. You may only use two
    13·1 answer
  • What is Yusef most likely finding?
    12·1 answer
  • a box is pushed 40 m by a mover. the amount of work done was 2,240j. how much force was exerted on the box a box is pushed 40 m
    11·2 answers
  • Michael has a substance that he puts in Container 1. The substance has a volume of 5 cubic meters. He then puts the substance in
    14·1 answer
  • Why can't we currently power spacecraft beyond Jupiter on solar power?
    12·1 answer
  • Heat of ______ is the energy needed for a substance to change from a liquid to a gas
    6·2 answers
  • .. An object has a mass of 40 000 kilograms
    8·1 answer
  • in a region where the electric field is uniform and points in the x direction, the electric potential is -2000 v at x = 8 m and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!