Answer:
321 R 3
Step-by-step explanation:
the quotient is 321 with a remainder of 3
you can check your work by doing 321 * 24 + 3 = 7,707
We have that the total students there are 500. The 12-graders there are 200. Probability is defined as the ratio of positive outcomes of an event, over all the possible outcomes. Suppose we pick student randomly. Then, there are 200 positive outcomes (positive outcome: we pick a student in 12th grade) and there are totally 500 outcomes (we can pick 500 students in total from Riverside High School). This ratio gives:

. The requested probability is 0.40
Answer:
Below!
Step-by-step explanation:
Solve for y.
Rewrite in slope-intercept form.
Use the slope-intercept form to find the slope and y-intercept.
Any line can be graphed using two points. Select two x values, and plug them into the equation to find the corresponding y values.
Graph the line using the slope and the y-intercept, or the points.
We can simplify by 7
28/7 = 4
35/7 = 5
Answer- 4/5
Answer: The company should produce 7 skateboards and 16 rollerskates in order to maximize profit.
Step-by-step explanation: Let the skateboards be represented by s and the rollerskates be represented by r. The available amount of labour is 30 units, and to produce a skateboard requires 2 units of labor while to produce a rollerskate requires 1 unit. This can be expressed as follows;
2s + r = 30 ------(1)
Also there are 40 units of materials available, and to produce a skateboard requires 1 unit while a rollerskate requires 2 units. This too can be expressed as follows;
s + 2r = 40 ------(2)
With the pair of simultaneous equations we can now solve for both variables by using the substitution method as follows;
In equation (1), let r = 30 - 2s
Substitute for r into equation (2)
s + 2(30 - 2s) = 40
s + 60 - 4s = 40
Collect like terms,
s - 4s = 40 - 60
-3s = -20
Divide both sides of the equation by -3
s = 6.67
(Rounded up to the nearest whole number, s = 7)
Substitute for the value of s into equation (1)
2s + r = 30
2(7) + r = 30
14 + r = 30
Subtract 14 from both sides of the equation
r = 16
Therefore in order to maximize profit, the company should produce 7 skateboards and 16 rollerskates.