Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
Answer:
copying another writer's work with no attempt to acknowledge that the material was found in external source is considered as a direct plagiarism.
Answer:
Only 2,3,4 are true
Explanation:
Bosons Particles are particles that condense to the same state. Bosons particle have integral spin like 0 ,
,
,
, etc. Bosons particles always have asymmetric wave function and there is exchange of particles.
1) It does not obey Fermi_ Dirac statistics
2) It obeys Bose-Einstein statistics
3) The object can have intrinsic spin 
4) Yes the Bosons particle is always symmetric with exchange of particles
5) No Bosons particle are symmetric and not asymmetric
Talk about the jobs that pipeline construction provides to citizens and wether or not it’s effects are ultimately eco-friendly