DEFINITELY C
c is the most accurate answer the others dont make sence
Answer:
The book remained in its state of rest before the car started to move forward as no direct force acted on it.
Explanation:
According to Newton's first law of motion, a body will continue in its present state of rest, or if it is in motion, will continue to move with uniform speed in a straight line unless aced upon by an external force. This tendency of a body to remain in its state of reset or uniform motion in a straight line is known as inertia and is directly proportional to the mass of the body. The more massive a body, the more inertia it possesses. Thus Newton's first law is also known as the law of inertia.
Considering the case of the book on the dashboard of a stationary car which suddenly starts to move. While the car is stopped at the traffic light, the dashboard where the book sits and the book are both at rest. When the car begins to move forward, the dashboard moves forward with it. However as the book is not a part of the car, no force is directly acting on it, so the book so it stays at rest due to its inertia.
Therefore, as the car is moving forward, the stationary book appears to move backward from the reference point of the car, sliding off the dashboard.
All forms of matter are comprised of atoms. Wind in itself is the movement of particles(air). Wind does not have particles since it is an action and not a form of matter.
We want to know what is the power supplied by the power cell if the current I=0.5 A and the voltage V=0.43 V. The equation for power P is P= I*V, so:
P=I*V=0.5*0.43=0.215 W
So the correct answer is that the power cell is supplying the motor with P=0.215 W of power.
Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s