Answer:
Chemical equations need to be balanced so that they follow the law of conservation of mass.
To solve this questions you first need to find the number of moles of barium phosphate you have. The molar mass of barium phosphate is 601.93g/mol.
24.4/601.83 = 0.0402 moles barium phosphate
Then you need to use avagadro’s number, 6.022 x 10^23, which is the number of molecules or formula units in a mole.
6.022 x 10^23 * 0.0402 = 2.42 x 10^22 formula units
The Law of Conservation of Mass dates from Antoine Lavoisier's 1789 discovery that mass is neither created nor destroyed in chemical reactions. ... If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system.
<span>Heat from the can is making the water molecule move faster, which melts the ice.</span>
Answer: 159 grams
Explanation:
Copper (ii) oxide has the chemical formula CuO.
Now given that:
Mass of CuO in grams = ? (let unknown value be Z)
Number of moles = 2.00 moles
Molar mass of CuO = ?
For the molar mass of CuO: Atomic mass of Copper = 63.5g ; Oxygen = 16g
= 63.5g + 16g
= 79.5 g/mol
Apply the formula:
Number of molecules = (mass in grams/molar mass)
2.00 moles = (Z / 79.5 g/mol)
Z = 79.5 g/mol x 2.00 moles
Z = 159g
Thus, there are 159 grams in 2.00 moles of copper (ii) oxide