Answer:
Kc of reaction is 20.
Explanation:
The two proteins are X and Y.
The [X] = 1mM
[Y]=1mM
At equilibrium, [X] = 0.2mM [Y] = 0.2mM
we know that equilibrium constant is:
Kc=![\frac{[Products]}{[Reactants]}=\frac{[XY]}{[X][Y]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BProducts%5D%7D%7B%5BReactants%5D%7D%3D%5Cfrac%7B%5BXY%5D%7D%7B%5BX%5D%5BY%5D%7D)
[XY]= 1-0.20=0.80 mM
putting values:
Kc=
<h2>Answer:</h2>
Option A is correct
Adding an enzyme to decrease the activation energy of the reaction
<h2>Explanation:</h2>
Enzymes are the biological catalyst. They are proteins in nature. They are naturally found in humans,animals,micro-organisms,plants etc. They catalyze the chemical reactions by lowering activation energy and without being consumed in it.
0.347 mols, working out shown on photo
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Answer : The final pressure will be, 666.2 mmHg
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure = 790 mmHg
= final pressure = ?
= initial volume = 101.2 mL
= final volume = 120 mL
Now put all the given values in the above equation, we get:


Therefore, the final pressure will be, 666.2 mmHg