Answer:
52.00 AMU
Explanation:
(49.946 * 0.043) + (51.941 * 0.838) + (52.941 * 0.095) + (53.939 * 0.024) = 51.998
Make sure to round, 52.00 AMU.
Answer:
1.
meteorology A line drawn on a map or chart connecting places of equal or constant pressure.
2.
nuclear physics Either of two nuclides of different elements having the same mass number.
3.
thermodynamics A set of points or conditions at constant pressure.
<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:



Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:

<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
![[HI]_{eq}=2x=(2\times 0.079)=0.158M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.079%29%3D0.158M)
![[H_2]_{eq}=(0.1-x)=(0.1-0.079)=0.0210M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D%280.1-x%29%3D%280.1-0.079%29%3D0.0210M)
![[I_2]_{eq}=0.0210M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.0210M)
Putting values in above expression, we get:

Hence, the value of equilibrium constant for the given reaction is 56.61
Answer:
CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4
Explanation:
When the same species undergoes both oxidation and reduction in a single redox reaction, this is referred to as a disproportionation. Therefore, divide it into two equal reactions.
NO2→NO^−3
NO2→NO
and do the usual changes
First, balance the two half reactions:
3. NO2 +H2O →NO^−3 + 2 H^+ + e−
4. NO2 +2 H^+ + 2e− → NO + H2O
Now multiply one or both half-reactions to ensure that each has the same number of electrons. Here, Eqn (3) x 2 results in each half-reaction having two electrons:
5. 2 NO2 + 2 H2O → 2 NO^−3 + 4H^+ + 2e−
Now add Eqn 4 and 5 (the electrons now cancel each other):
3NO2 + 2H^+ + 2H2O → NO + 2 NO−3 + H2O + 4H+
and cancel terms that’s common to both sides:
3NO2 + H2O → NO + 2NO^−3 + 2H+
This is the net ionic equation describing the oxidation of NO2 to NO3 in basic solution.
Learn more about balancing equation here:
brainly.com/question/26227625
#SPJ4