The endomembrane system is the cell structure that most resembles the human nervous system. The reason for that is because it consists of a group of cell membranes and organelles that are interconnected in order to accomplish their function, similarly to those in the nervous system.
Shred red cabbage ~ (3/4 of a very small head)
Put the cabbage pieces in a small container ~ ( you can use a Pyrex-4-cup measure, a bowl or even a plastic zipper bag)
Cover the cabbage with very hot water. Let it sleep until the water has cooled. (somewhere between lukewarm and room-temperature)
The purple liquid you've made is your indicator.
Pour it into a container and compost the cabbage.
Now look for substances that may be acids or bases.
Liquids are good, like fruits.
You can also use solids around for baking are good too. (such as baking soda, salt, sugar, cream of tartar...)
Get containers for mixing (such as tea cups, because they are small, shallow and white inside)
Pour the indicator into the tea cups and add an acid or base.
Lemon juice, rice wine vinegar, and apple cider vinegar, turn the cabbage-water indicator into a pink.
Orange juice or fresh oranges (same thing) turn the cabbage-water indicator into an orangish-pinkish color.
Baking soda turns the cabbage-water indicator blue.
Milk (non-fat) turns the cabbage-water indicator turn opaque and milky, yet purple.
An egg white (which won't get into the solution immediately until after a lot of stirring) turns the cabbage-water indicator blue.
Hint:
Bases mostly turn the indicator towards blue-ish colors such as purple, light blue, dark blue, opaque blue...
Acids mostly turn the indicator towards pink-ish colours such as orange-ish pink, floral pink...
(You'll have to keep on testing the cabbage-water indicator in after a day or two to see if the indicator quality persists or degrades.
Answer:Base A is the weakest conductor electricity
Explanation:
Dissociation is a factor that affects electrical conductivity. The greater the percentage of dissociation for bases the stronger the conductivity of electricity.
Given that
Base A dissociates 25% in water
Base B dissociates 50%.
Base C dissociates 75%
We can conclude that Base A is the weakest conductor oelectricity since it has the lowest percentage of dissociation.
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:
![\Delta H^o_{rxn}=?](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%3F)
The intermediate balanced chemical reaction are:
(1)
(2)
![\Delta H_2=-1269kJ](https://tex.z-dn.net/?f=%5CDelta%20H_2%3D-1269kJ)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.