1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
1 year ago
15

What is the y-intercept of the line that passes

Mathematics
1 answer:
lara [203]1 year ago
5 0

The slope is

\frac{-13-31}{1-(-10)}=-4

So, the equation is

y+13=-4(x-1)

The y-intercept is when x=0, so

y+13=-4(0-1) \\ \\ y+13=4 \\ \\ \boxed{y=-9}

You might be interested in
Can some one help me Pls
Firlakuza [10]

Answer:

A is one of the true statements because 25 is the largest number that 50 and 75 can both divide evenly into.

D is the other true statement because 45 is the lowest number that 5 and 9 can both multiply into.

8 0
3 years ago
Solve the system using substitution x+5y=0 3y+2x=-21
Crazy boy [7]

Answer:

\left \{ {{x = -15} \atop {y=3}} \right.

Step-by-step explanation:

\left \{ {{x + 5y = 0} (1) \atop {3y + 2x = -21}(2)} \right.  \left \{ {{x = -5y} \atop {3y + 2x = -21}} \right.    \left \{ {{x = -5y} \atop {3y + 2*(-5y) = -21}} \right.  \left \{ {{x = -5y} \atop {3y - 10y = -21}} \right. \\ \left \{ {{x = -5y } \atop {-7y = -21}} \right.  \left \{ {{x = -5y} \atop {y= 3 }} \right.  \left \{ {{x = -5 * 3} \atop {y=3}} \right.=> \left \{ {{x=-15} \atop {y=3}} \right.

5 0
2 years ago
Read 2 more answers
Translate the equation mat at right into an equation. remember that the duble line represent equals
Jobisdone [24]

Answer:

translate the equation mat at right into an equation. remember that the duble line represent equals

Step-by-step explanation:

4 0
3 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
a family biys airline tickets online. each ticket costs $167. the family buys travel insurance with each ticket that costs $19 p
My name is Ann [436]
167 + 19 = 186x

186x + 16 = 1132

subtract 16 from both sides

186x = 1116

divide by 186 on both sides

x = 6

they bought 6 tickets total
4 0
3 years ago
Other questions:
  • Branliest<br> solve the equation <br> 8.7=3.5m-2.5(5.4-6m)
    8·1 answer
  • Which unit would you use to measure the weight of an aspirin?<br><br> mg<br> g<br> kg<br> km
    11·2 answers
  • If a is a negative number and b is a negative which expression is correct?
    5·2 answers
  • I don't understand (t+8)(-2)=12
    9·1 answer
  • Use the next to find the approximate surface area of the cylinder to the nearest square meter.
    13·1 answer
  • Help me to solve this question please faster thankyouu​
    9·1 answer
  • I have a BIG QUESTION! Do you think sign language should be taught as a second language like instead of taking Spanish it would
    5·2 answers
  • Suppose that 0.10 of population is colourblind if 25of sample drown from this population find probability that at least 7 have c
    8·1 answer
  • Can someone explain just 17-28??
    14·1 answer
  • Given that XY is a line segment with the angle a = 46°, work out the value of the angle
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!