Answer: Resonance in sound is when one object is vibrating at the same frequency to the second object of forces to the second frequency.
Explanation:
"Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies)." wikipedia I hope this helps you!
Answer:
A) incandescent ligth bulb, its efficiency is about 10%
Explanation:
The incandescent bulb, that is, the well-known focus with its warm light, was one of the most useful inventions of the 19th century although its use is currently considered very inefficient. These lamps waste between 80 and 90 percent of the total electricity they consume by turning it into heat. The metal filament thus heated and which is the central part of the bulb, only converts the remaining energy into light. Its service life ranges from 750 to 1,000 hours.
This is why they are used in ovens for food preparation, because of the large amount of heat they generate.
The steam boiler in a power plant depends on the fuel that it is using, but a coal-fired power plant with modern technology its efficiency is about 40%
Electric motor are around 85-92%
In order to better understand the concept of efficiency it is as if we pay 100 dollars of gasoline for our weekly use, but of that 100 dollars the car only uses 10 dollars to do that activity the rest of the money the 90 dollars were lost because of the inefficiencies of the vehicle.
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:
