Answer:
A. Materials with a low index of refraction cause light to refract very little.
Answer:
The distance between the two successive crests of the wave is 360m
Explanation:
Wavelength is defined as the property of wave in which the distance between identical points between two successive waves are calculated
Wavelength is referred to as the <em>distance between two successive crests or troughs</em>
<em>Given that:</em>
speed = 72.0 m/s
time = 5 seconds
Using the formula
C = fλ
Where C = speed, f = freequency and λ = wavelength
F = 1 / time
F = 1/5
F = 0.2Hz
From the fomula C = fλ
make λ the subject of the formula
λ = C / f
λ = 72/0.2
<em>λ = 360m</em>
The change in kinetic energy is 
Explanation:
According to the work-energy theorem, the work done on an object is equal to the change in kinetic energy of the object. Mathematically:
where
:
W is the work done on the object
is the final kinetic energy of the object
is the initial kinetic energy
Also, the work done on an object is (assuming that the force is applied parallel to the motion of the object):

where
F is the magnitude of the force
is the displacement of the object
In this problem, the force acting on the object is
F
While the displacement is the horizontal distance travelled, so

Therefore, the work done is

And so the change in kinetic energy is

Learn more about work and kinetic energy:
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/6536722
#LearnwithBrainly
Explanation:
The power P dissipated by a heater is defined as

where V is the voltage and I is the current.
a) The current running through a 130-W heater is

b) The resistance <em>R</em><em> </em>of the heater is

where
is our familiar Ohm's Law.


Answer:
During a chemical reaction, Bromine (Br) would be expected to <u><em>gain 1 valence electron to have a full octet.</em></u>
Explanation:
In the periodic table the elements are ordered so that those with similar chemical properties are located close to each other.
The elements are arranged in horizontal rows, called periods, which coincide with the last electronic layer of the element. That is, an element with five electronic shells will be in the fifth period.
The columns of the table are called groups. The elements that make up each group coincide in their electronic configuration of valence electrons, that is, they have the same number of electrons in their last.
The elements tend to resemble the closest noble gases in terms of their electronic configuration of the last layer, that is, having eight electrons in the last layer to be stable.
Bromine belongs to group 17 (VII A), which indicates that it has 7 electrons in its last shell. So bromine requires more energy to lose all 7 electrons and generate stability, than it does to gain 1 electron and fill in 8 electrons to be stable. So:
<u><em>During a chemical reaction, Bromine (Br) would be expected to gain 1 valence electron to have a full octet.</em></u>