<u>Answer:</u>
<h3>As electric current is carried in a cable, around it, a magnetic field is created. The lines of the magnetic fields form concentric circles around the wire. The direction of the magnetic field hinges on the direction of the current. It can be calculated by pointing the thumb of your right hand in the direction of the moment, using the "right hand law." The position of your curled fingers is in the magnetic field lines. The magnetic field magnitude depends on the sum of current, and the distance from the wire carrying the charge.</h3>
<u></u>
<u>Explanation:</u>
Determine the direction of vector B magnitude B: 

Resultant magnitude strength:
its direction is pointing to the left.
Note: Refer the image attached below
Coulomb's law is express as:
Answer:
A 'kink' in the glass tube which breaks the mercury as it contracts, storing the highest temperature reading. The glass tube is shaped like a lens to magnify the thin mercury thread. Shaking the thermometer resets the mercury back into the bulb.
Answer:
a parachute falling to the ground is uniform