Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas = 104 kPa
= final pressure of gas = 52 kPa
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
c) the salt solubility decreases with temperature.
Salts usually dissolve in water at a given temperature. When water cannot dissolve anymore salt at that same temperature, it is known as a saturation point. With most substances the solubility increases with increase in temperature. Same is the case for a salt like potassium nitrate. With increase in temperature the ability of it to dissolve in water increases. And so with decrease in temperature, the solubility decreases.
Answer:
84.8 mL
Explanation:
From the question given above, the following data were obtained:
Mass of CuNO₃ = 3.53 g
Molarity of CuNO₃ = 0.330 M
Volume of solution =?
Next, we shall determine the number of mole in 3.53 g of CuNO₃. This can be obtained as follow:
Mass of CuNO₃ = 3.53 g
Molar mass of CuNO₃ = 63.5 + 14 + (16×3)
= 63.5 + 14 + 48
= 125.5 g/mol
Mole of CuNO₃ =?
Mole = mass / Molar mass
Mole of CuNO₃ = 3.53 / 125.5
Mole of CuNO₃ = 0.028 moles
Next, we shall determine the volume of the solution. This can be obtained as follow:
Molarity of CuNO₃ = 0.330 M
Mole of CuNO₃ = 0.028 moles
Volume of solution =?
Molarity = mole /Volume
0.330 = 0.028 / Volume
Cross multiply
0.330 × Volume = 0.028
Divide both side by 0.330
Volume = 0.028 / 0.330
Volume = 0.0848 L
Finally, we shall convert 0.0848 L to millilitres (mL). This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.0848 L = 0.0848 L × 1000 mL / 1 L
0.0848 L = 84.8 mL
Therefore, the volume of the solution is 84.8 mL.
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K
Answer:
8
Explanation:
the number before the abbrviation for calcium (Ca) shows how many calcium there is.