Answer:
The temperature associated with this radiation is 0.014K.
Explanation:
If we assume that the astronomical object behaves as a black body, the relation between its <em>wavelength</em> and <em>temperature</em> is given by Wien's displacement law.
where,
λmax is the wavelength at the peak of emission
b is Wien's displacement constant (2.89×10⁻³ m⋅K)
T is the absolute temperature
For a wavelength of 21 cm,
Answers:
A) 2040 kg/m³; B) 58 600 km
Explanation:
A) Density
<em>B) Radius</em>
Answer:
Carbon is released back into the atmosphere when organisms die, volcanoes erupt, fires blaze, fossil fuels are burned, and through a variety of other mechanisms.Humans play a major role in the carbon cycle through activities such as the burning of fossil fuels or land development.
Answer:
A and D are true , while B and F statements are false.
Explanation:
A) True. Since the standard gibbs free energy is
ΔG = ΔG⁰ + RT*ln Q
where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R
when the system reaches equilibrium ΔG=0 and Q=Keq
0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)
therefore the first equation also can be expressed as
ΔG = RT*ln (Q/Keq)
thus the standard gibbs free energy can be determined using Keq
B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions
C) False. From the equation presented
ΔG⁰ = (-RT*ln Keq)
ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1
for example, for a reversible reaction ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)
D) True. Standard conditions refer to
T= 298 K
pH= 7
P= 1 atm
C= 1 M for all reactants
Water = 55.6 M
Answer:
do i care lol LOOK AT THIS
VVVVVVVVVVVVVVVVVV