Answer:
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions.
Explanation:
The student have in solution Ag⁺ and Cu²⁺ ions but he just want to analyze the silver, that means he need to separate ions.
Centrifuging the solution to isolate the heavier ions <em>FALSE </em>Centrifugation allows the separation of a suspension but Ag⁺ and Cu²⁺ are both soluble in water.
Adding enough base solution to bring the pH up to 7.0 <em>FALSE </em>At pH = 7,0 these ions are soluble in water and its separation will not be possible.
Adding a solution containing an anion that forms an insoluble salt with only one of the metal ions <em>TRUE </em>For example, the addition of Cl⁻ will precipitate the Ag⁺ as AgCl(s) allowing its separation.
Evaporating the solution to recover the dissolved nitrates. <em>FALSE</em> . Thus, you will obtain the nitrates of these ions but will be mixed doing impossible its separation.
I hope it helps!
Am I doing this right?
What is [OH-] of a solution
with a pH of 4.0?
Answer in M
Ya
175.8 g NaCl to moles:
(175.8 g)/(58.44 g/mol) = 3.008 mol NaCl
Molarity = moles of solute/volume of solution in liters
(3.008 mol NaCl)/(1.5 L) = 2.0 M.
The molarity of this solution would be 2.0 M.
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4