Answer:

Explanation:
From the question we are told that
Mass 
Height 
Generally the equation for velocity before impact is is is mathematically given by



Generally the equation for Kinetic Energy is is mathematically given by




Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
Answer:
W = 0 J
Explanation:
The amount of work done by gas at constant pressure is given by the following formula:

where,
W = Work done by the gas
P = Pressure of the gas
ΔV = Change in the volume of the gas
Since the volume of the gas is constant. Therefore, there is no change in the volume of the gas:

<u>W = 0 J</u>
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by
