NB: The diagram of the pulley system is not shown but the information provided is sufficient to answer the question
Answer:
Power = 2702.56 W
Explanation:
Let the power consumed be P
Energy expended = E = mgh
height, h = 5 m
E = 80 * 9.8 * 5
E = 3920 J

To calculate the time, t
From F = ma
F = 900 N
900 = 80 a
a = 900/80
a = 11.25 m/s²
From the equation of motion, 
The drill head starts from rest, u = 0 m/s

Power, P = E/t
P = 3920/0.0.943
P = 4157.79 W
But Efficiency, E = 0.65
P = 0.65 * 4157.79
Power = 2702.56 W
Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
Trees are important because oxygen
The mass of lead required to make a 1.00 cm3 fishing sinker is 11.3g.
What is mass?
Mass is a metric used in physics to express inertia, a fundamental characteristic of all matter. A mass of matter's resistance to altering its direction or speed in response to the application of a force is what it essentially is. The change that an applied force produces is smaller the more mass a body has.
Given :
Density of lead = 11.3 g/cm3
Volume of sinker = 1.00 cm3
One of a substance's attributes is density, which is calculated by dividing the mass by the volume. Mathematically:
Density : Mass / volume
therefore after putting the values,
mass= 11.3g
To learn more about density click on the link below:
brainly.com/question/18939565
#SPJ4
To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.