In order to develop this problem it is necessary to use the concepts related to the conservation of both potential cinematic as gravitational energy,


Where,
M = Mass of Earth
m = Mass of Object
v = Velocity
r = Radius
G = Gravitational universal constant
Our values are given as,



Replacing we have,




Therefore the speed of the object when striking the surface of earth is 4456 m/s
D, water vapor. Gaseous state would have more kinetic energy, they are moving faster. If you have to compare the same state, then higher temperature would have the higher kinetic energy. But if you have solid and liquid at the same temperature - then liquid would have more.
You mean like a box sitting on a table.
One force is the force of gravity, pulling downward on the box.
Now, you know that the forces acting on the box must be balanced, because
if they're not, then the box would be accelerating. But it's just sitting there, so
there must be some other force, just exactly the right strength and direction to
exactly cancel the force of gravity on the box, so that the net force on it is zero.
The other force is the force of the table pushing upward on the box. It's called
the "normal force".
Answer:
6 m/s
Explanation:
momentum= mass times velocity
120 = 20v
v = 120/20