Answer:
Explanation:
<h3>Given Data:</h3>
Mass = m = 68 kg
Velocity = v = 30 m/s
Time = 2 hours = 2 × 60 × 60 = 7200 s
<h3>Required:</h3>
Force = F = ?
<h3>Formula to be used:</h3>
<h3>Solution:</h3>
Answer:
<h2> $1.50</h2>
Explanation:
Given data
power P= 2 kW
time t= 15 min to hours = 15/60= 1/4 h
cost of power consumption per kWh= 10 cent = $0.1
We are expected to compute the cost of operating the heater for 30 days
but let us computer the energy consumption for one day
Energy of heater for one day= 2* 1/4 = 0.5 kWh
the cost of operating the heater for 30 days= 0.5*0.1*30= $1.50
<u><em>Hence it will cost $1.50 for 30 days operation</em></u>
Answer:
Answer:
the amount of energy flowing is 1.008x10⁹J
Explanation:
To calculate how much heat flows, the expression is the following:
Where
K=thermal conductivity=0.81W/m°C
A=area=6.2*12=74.4m²
ΔT=30-8=22°C
L=thickness=8cm=0.08m
t=time=16.9h=60840s
Replacing:
Explanation:
Answer:
The equation for the object's displacement is
Explanation:
Given:
m = 16 lb
δ = 3 in
The stiffness is:
The angular speed is:
The damping force is:
Where
FD = 20 lb
u = 4 ft/s = 48 in/s
Replacing:
The critical damping is equal:
Like cc>c the system is undamped
The equilibrium expression is:
Hi! The answer is ‘B’! Because the nucleus is found at the center and contains protons (positive charge) and neutrons (no charge)