Hello friend ☺
ΔH = MCΔT
ΔH = to the amount of energy or change in energy (J)
mass of water
C = waters specific heat capacity
ΔT = change in temperature
and so ΔH = 25 × 4.18 × ( 112-67 ) J = 4702.5 J
Thanks ❤
Kepler did not study the speed of the planets, rather, he studied how the planets move in the solar system. He proposed three laws. As a summary, he described that the planets move around the sun in the shape of an ellipse (orbit), and the Sun being one of the foci. Then, he proposed the period for the planet to complete one revolution around the Sun.
On the other hand, Newton studied the forces acting on the planet (or any object in space) that explain how the planets move around the solar system as described by Kepler. Also, Kepler's observations only apply to planets and not the moons or satellites. Thus, Kepler only made laws from observations, while Newton based it from underlying principles that led him to mathematical equations such as the law of universal gravitation.
<span>Pass the mixture through filter paper. The large particles in the suspension will filter out. to tell the difference between a solution and a colloid, shine a beam of light through the mixture, if it reflects then it is a colloid, if it doesn't then it is a solution</span>
<span>In the written directions the indicator that the matter contains protein is when the solution turns a purple color. Therefore we can conclude that if your sample causes the solution of Copper Sulfate and Sodium Hydroxide to turn purple, it does indeed contain protein.</span>
If there is solution with nonvolatile solute (<span>substance that does not readily </span>evaporate<span> into a </span>gas) <span>only the pure vapor of the solvent is present above the solution and solute stays in solution and do not enters vapor above solution. This is because nonvolatile solute has slow rate of evaporation and low vapore pressure.
If solution has two volatile components, composition of the vapor depends on vapor pressures of the components according </span><span>Raoult's Law.</span>