<h3>
Answer: 7.74 newtons</h3>
========================================
Steps Shown:
Work = Force*Displacement
Power = Work/Time
Power = (Force*Displacement)/Time
900 W = (F*1000 m)/(8.6 sec)
900 = (F*1000)/8.6
900*8.6 = 1000F
7740 = 1000F
1000F = 7740
F = 7740/1000
F = 7.74 newtons
Work = Force x distance
(10 pounds)(2 feet)
Work = 20 foot-pounds of work
hope this helps :)
Answer:
9375 N
Explanation:
From the question,
Centripetal force (F) = mv²/r.................. Equation 1
Where m = mass of the car, v = velocity of the car, r = radius of the curve.
Given: m = 900 kg, r = 600 m, v = 25 m/s
Substitute these values into equation 1
F = (900×25²)/600
F = 9375 N.
Hence the centripetal force on the car is 9375 N
Answer:
3560.36 Watts
Explanation:
Power,
where P is power, n is the number of skiers, t is time in seconds and Δt is change in time, ΔW is given by mgh where m is mass, g is gravitational constant, h is height
Substituting n for 4 skiers, m for 62.9 Kg, g for 9.81, h for 148 m and t for 1.71*60=102.6 seconds
P=
Average power is approximately 3560.36 Watts
Answer:
so maximum velocity for walk on the surface of europa is 0.950999 m/s
Explanation:
Given data
legs of length r = 0.68 m
diameter = 3100 km
mass = 4.8×10^22 kg
to find out
maximum velocity for walk on the surface of europa
solution
first we calculate radius that is
radius = d/2 = 3100 /2 = 1550 km
radius = 1550 × 10³ m
so we calculate no maximum velocity that is
max velocity = √(gr) ...............1
here r is length of leg
we know g = GM/r² from universal gravitational law
so G we know 6.67 ×
N-m²/kg²
g = 6.67 ×
( 4.8×10^22 ) / ( 1550 × 10³ )
g = 1.33 m/s²
now
we put all value in equation 1
max velocity = √(1.33 × 0.68)
max velocity = 0.950999 m/s
so maximum velocity for walk on the surface of europa is 0.950999 m/s