Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:


where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,

<u>k = 3.5 N/m</u>
Answer:
a.) The main scale reading is 10.2cm
b.) Division 7 = 0.07
c.) 10.27 cm
d.) 10.31 cm
e.) 10.24 cm
Explanation:
The figure depicts a vernier caliper readings
a.) The main scale reading is 10.2 cm
The reading before the vernier scale
b.) Division 7 = 0.07
the point where the main scale and vernier scale meet
c.) The observed readings is
10.2 + 0.07 = 10.27 cm
d.) If the instrument has a positive zero error of 4 division
correct reading = 10.27 + 0.04 = 10.31cm
e.) If the instrument has a negative zero error of 3 division
correct reading = 10.27 - 0.03 = 10.24cm
Answer:
100years later
Explanation:
Because the lights will arrive at world after 100 years later.