Answer:
The Answer is A. The slope is upward.
Explanation:
Answer: 6m/s
Explanation:
Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.
After collision, the two objects will move at the same velocity (v).
Let mA and mB be the mass of the two objects
uA and uB be their velocities before collision.
v be their velocity after collision
Since the two objects has the same mass, mA= mB= m
Also since object A is at rest, its velocity = 0m/s
Velocity of object B = 12m/s
Mathematically,
mAuA + mBuB = (mA+mB )v
m(0) + m(12) = (m+m)v
0+12m = (2m)v
12m = 2mv
12 = 2v
v = 6m/s
Therefore the speed of the composite body (A B) after the collision is 6m/s
To solve this problem it is necessary to simply apply the concepts related to cross-multiply and proportion between units.
Let's start first by relating the amount of dose needed to be supplied per hour, in other words,
The infusion of 250ml should be supplied at a rate of 75ml / hour, so what amount x of mg hour should be supplied with 50Mg.




Converting to mcg units we know that 1mg is equal to 1000mcg and that 1 hour contains 60 min, therefore



The dose should be distributed per kilogram of the patient so if the patient weighs 72.4kg,


Therefore the client will receive 3.5mcg/kg/min.
Wrist flexors are the agonist muscles, while wrist extensors are the muscle antagonists. The specific names are the flexor digitorum and the extensor digitorum.