1) Inversely
2) increases
3) Boyle's
4) mass
5) Kelvin
6) Charles's
7) Gay-Lussac's
8) directly
9) combined
10) the amount
<span>The pressure and volume of a fixed mass of gas are inversely related. If one decreases, the other increases. This relationship is known as Boyle's law. The volume of a fixed mass of a gas is directly proportional to its kelvin temperature. This relationship is known as Charles's law. Gay-Lussac's law states that the pressure of a gas is directly proportional to the kelvin temperature if the volume remains constant. These three separate gas laws can be written as a single expression called the combined gas law. It can be used in situations in which only the amount of gas is constant. </span>
Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф

Actually Welcome to the Concept of the Methods of Separation.
Evaporation and Decantation are the process which can be easily used to remove the Soluble Impurities.