Do all substances dissolve in water? Kids explore the varying levels of solubility of common household substances in this fun-filled experiment!
Materials Needed:
4 clear, glass jars filled with plain tap water
Flour
Salt
Talcum or baby powder
Granulated sugar
Stirrer
Step 1: Help your child form a big question before starting the experiment.
Step 2: Make a hypothesis for each substance. Perhaps the salt will dissolve because your child has watched you dissolve salt or sugar in water when cooking. Maybe the baby powder will not dissolve because of its powdery texture. Help your child write down his or her predictions.
Step 3: Scoop a teaspoon of each substance in the jars, only adding one substance per jar. Stir it up!
Step 4: Observe whether or not each substance dissolves and record the findings!
Your child will likely note that that sugar and salt dissolve, while the flour will partially dissolve, and the baby powder will remain intact. The grainy crystals of the sugar and salt are easily dissolved in water, but the dry, powdery substances are likely to clump up or remain at the bottom of the jar.
As you can see, the scientific method is easy to work into your child’s scientific experiments. Not only does it increase your child’s scientific learning and critical thinking skills, but it sparks curiosity and motivates kids as they learn to ask questions and prove their ideas! Get started today with the above ideas, and bring the scientific method home to your child during your next exciting science experiment
The answer you are looking for is True
Explanation:
a) The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 45 g
= mass of coffee = 180 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![45 g\times 0.80J/g^oC\times (T_{final}-24^oC)=-[180 g\times 4.186J/g^oC\times (T_{final}-83^oC)]](https://tex.z-dn.net/?f=45%20g%5Ctimes%200.80J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-24%5EoC%29%3D-%5B180%20g%5Ctimes%204.186J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-83%5EoC%29%5D)

80.30 °C is the final temperature.
b) Energy flows from higher temperature to lower temperature.Whenever two bodies with different energies and temperature come in contact. And the resulting temperature of both bodies will less then the body with high temperature and will be more then the body with lower temperature.
So, is our final temperature of both aluminium and coffee that is 80°C less than initial temperature of coffee and more than the initial temperature of the aluminum.
Answer:
1. bitter
2. turns litmus paper red
3. oxygen, hydrogen, and molecules.
Explanation:
Answer:
krypton is a cation
magnesium is also a cation
aluminium is a anion
and , silicon is cation