Answer:

Explanation:
We are given that
Mass of one asteroid 1,
Mass of asteroid 2,
Initial distance between their centers,d=13.63 R
Radius of each asteroid=R
d'=R+R=2R
Initial velocity of both asteroids

We have to find the speed of second asteroid just before they collide.
According to law of conservation of momentum




According to law of conservation of energy







Hence, the speed of second asteroid =
<h3><u>Answer;</u></h3>
= 75 %
<h3><u>Explanation</u>;</h3>
To measure efficiency of a machine, compare the work output to work input.
Efficiency = Work output/ work output × 100 %
= 300/400 × 100
= 75 %
Answer: evaporation
Explanation:
Refrigerators work by causing the refrigerant circulating inside them to change from a liquid into a gas. This process, called evaporation, cools the surrounding area and produces the desired effect.
Answer:
B (force = mass X acceleration)
Explanation:
The acceleration of an object depends on the mass of the object and the amount of force applied. His second law defines a force to be equal to change in momentum (mass times velocity) per change in time.
Formula: F = m x a
Answer:
The neutron core is completely destroyed
Explanation:
A earth - supernova is an explosion resulting to the death of a star that occurs close enough to the earth but this does not completely destroy a star. Supernovae are the most violent explosions in the universe. But they do not explode like a bomb explodes, blowing away every bit of the original bomb. Rather, when a star explodes into a supernova, its core survives. The reason for this is that the explosion is caused by a gravitational rebound effect and not by a chemical reaction. Stars are so large that the gravitational forces holding them together are strong enough to keep the nuclear reactions from blowing them apart. It is the gravitational rebound that blows apart a star in a supernova.