TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer: The speed at the first quarter checkpoint is 0.74 m/s. The speed at the second quarter checkpoint is 1.40 m/s. The speed at the third quarter checkpoint is 1.61 m/s. The speed at the finish line is 1.89 m/s.
Explanation: I did the assignment and got it correct :)
Answer: The first electromagnet has a more powerful current than
the second
Explanation:
Since the two electromagnets contain the same types of magnets and wires. If the magnet In the first moves much faster than the second. Therefore:
The first electromagnet has a more powerful current than the second
Because the induced EMF is proportional to the induced current.
Where the induced EMF depends on the speed of the magnet according to the formula below
EMF = BVL
So, increase in speed of the magnet will cause more powerful induced current and emf