Hi there!

Use the following formula to solve:
KE = 1/2mv², where:
KE = kinetic energy
m = mass (kg)
v = velocity (m/s)
Therefore:
KE = 1/2(1500)(30)²
KE = 1/2(1500)(900)
KE = 675000 J
Answer:
A torque of 102.5375 Nm must be exerted by the fireman
Explanation:
Given:
The rate of water flow = 6.31 kg/s
The speed of nozzle = 12.5 m/s
Now, from the Newton's second law we have
The reaction force to water being redirected horizontally (F) = rate of change of water's momentum in the horizontal direction
thus we have,
F = 6.31 kg/s x 12.5m/s
or
F = 78.875 N
Now,
The torque (T) exerted by water force about the fireman's will be
T = (F x d)
or
T = 78.875 N x 1.30 m
T = 102.5375 Nm
hence,
<u>A torque of 102.5375 Nm must be exerted by the fireman</u>
Explanation:
the question is unanswerable
Answer:
Acceleration = 2.8 m/s²
Explanation:
Given the following data;
Mass = 1500 kg
Net force = 4200 Newton
To find the truck's acceleration;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 2.8 m/s²
By blocking the UV rays that are emitted by the sun.
-Steel jelly