Considering the ideal gas law, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P× V = n× R× T
In this case, you know:
- P= 2 atm
- V= ?
- n=
being 2g/mole the molar mass of H2, that is, the amount of mass that a substance contains in one mole. - R= 0.082

- T= 353 K
Replacing:
2 atm× V = 4.745 moles× 0.082
× 353 K
Solving:
V = (4.745 moles× 0.082
× 353 K)÷ 2 atm
<u><em>V= 68.67 L</em></u>
Finally, a sample weighing 9.49 g occupies 68.67 L at 353 K and 2.00 atm.
Learn more:
Answer:The height of First Copy is 20 cm.
Step-by-step explanation:
Given:
Original Height = 25 cm
First copy is reduce to 80% of Original height.
Therefore to find the height of first copy can be find out by multiplying 80 with original height and then dividing by 100.
∴ Height of First Copy =
Hence Height of first copy is 20 cm
Now Another copy is reduce to 85% of First Copy.
Therefore to find the height of another copy can be find out by multiplying 85 with first copy height and then dividing by 100.
∴ Height of Another Copy =
Hence Height of Another copy is 17 cm
Explanation:
Molar mass:

Grams to moles:

Moles to atoms (Avogadro's number):


Answer:
We determine the Coulombic force using the Coulomb's Law:
F = kQ₁Q₂/d²
where
k is equal to 9×10⁹ N·m²/C²
Q₁ and Q₂ are the charges of the two particles
d is the distance between them
For this problem, Q₁ = +2(0.16×10⁻¹⁸ C) and Q₂ = -2(0.16×10⁻¹⁸ C), because a single electron or proton has a charge of 0.16×10⁻¹⁸ C. The distance between the two ions is the sum of their radii.
d = radius of Ca²⁺ + radius of O²⁻
d = 0.106×10⁻⁹ m + 0.132×10⁻⁹ m
d = 0.238×10⁻⁹ m
F = (9×10⁹ N·m²/C²)(+2(0.16×10⁻¹⁸ C))(-2(0.16×10⁻¹⁸ C))/(0.238×10⁻⁹ m)²
F = 1.017×10¹¹ N
Atomic weight of metal : 24
<h3>Further explanation
</h3>
Proust states the Comparative Law that compounds are formed from elements with the same Mass Comparison so that compounds have a fixed composition of elements
Divalent metal oxide=XO
MW O = 16
MW XO₂ = X+16
