Explanation:
Expression for the
speed is as follows.

where,
= root mean square speed
k = Boltzmann constant
T = temperature
M = molecular mass
As the molecular weight of oxygen is 0.031 kg/mol and R = 8.314 J/mol K. Hence, we will calculate the value of
as follows.

= 
= 498.5 m/s
Hence,
for oxygen atom is 498.5 m/s.
For nitrogen atom, the molecular weight is 0.028 kg/mol. Hence, we will calculate its
speed as follows.

= 
= 524.5 m/s
Therefore,
speed for nitrogen is 524.5 m/s.
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

Valency- it means the combing capacity if an element.
<span> radical- it is an atom, molecule, or ion that has unpaired valence electrons or an open electron shell.
</span>
The correct answer among the choices given is the first option.The teacher most likely is talking about distillation of a mixture. Distillation is a unit operation that separates component substances from a liquid mixture which is shown by the teacher. Also, the most common purifying technique in the production of gasoline is by this process.
Answer:
1) the carbon and hydrogen valence electrons
Explanation:
The lewis dot diagram illustrates how electrons are arranged round atoms in a molecule. The dots represents the;
1) the carbon and hydrogen valence electrons