Answer:
william h. seward secured the purchase of alaska from:
Explanation:
Hi! Let me help you!
a = (Vf - Vi)/t ; where distance d = [2(t)]/(4+t), t = 5secs, and Vi = 0
a = [(2t)/(4+t)]/t <---- working equation
a = {[2(5)]/9}/5 <---- cancel 5
a = 2/9 ft/s^2 <---- Answer
Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:





Explanation:
it can be used to show how the parts of the cycle relate to one another
A = 94.22 Newtons
b = 58.16 kg
Gravity on the moon is 1.62 m/s^2