Answer:
Explanation:
Not enough information.
IF we ASSUME she wants the car to be at LAUNCH LEVEL after 1 second of flight.
THEN
The highest point will have zero vertical velocity and will have taken ½ second to get there. This means that the initial vertical velocity was
v = gt
vy₀ = 9.8(0.5)
vy₀ = 4.9 m/s
vsinθ = vy₀
v = vy₀/sinθ
v = 4.9/sin32
v = 9.2466...
v = 9.2 m/s
Answer:
it depends on what you wanna get
if its chicken nuggies then mcdonalds
if its bomb a.ss tacos that taste pretty good but with meat that looks like literal sh.it then probably tacobell
Answer:
"The distance between crests is 3 cm."
Explanation:
If he writes down "The distance between crests is 3 cm."
That means he is describing the wavelength of a wave and not longitudinal wave. He ought to write something about " direction "
Longitudinal waves are waves in which the displacement of the medium is in the same direction as, or parallel to, the direction of propagation of the wave. While
Wavelength is the distance between the two successfully Crest or trough
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.