If the vertical component is 29.6 m/s down, and the horizontal component
is 54.8 m/s parallel to the surface, then the magnitude of the slanty vector is
√(29.6² + 54.8²) = √(876.16 + 3003.04) = √3879.2 = 62.28 m/s .
That's 139 mph ! Wow !
Here, as the charge is uniformly distributed in the sphere, we will consider s as an area of the sphere which is, s=4πr2 and r is radius of the gaussian surface shown in the figure above. From this, it can be seen that
Answer:
Impulse, |J| = 0.6716 kg-m/s
Force, F = 63.35 N
Explanation:
It is given that,
Mass of the baseball, m = 0.146 kg
Initial speed of the ball, u = 15.3 m/s
Final speed of the ball, v = 10.7 m/s
To find,
(a) The magnitude of this impulse.
(b) The magnitude of the average force of the glass on the ball.
Solution,
(a) Impulse of an object is equal to the change in its momentum. It is given by :


J = -0.6716 kg-m/s
or
|J| = 0.6716 kg-m/s
(b) Another definition of impulse is given by the product of force and time of contact.
t = 0.0106 s



F = 63.35 N
Hence, this is the required solution.
Answer:
a. 0.000002 m
b. 0.00000182 m
Explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:


b) If the temperatures changes, we can still reuse the ideal gas equation above:

