Answer: Solution for 6-8x=-5x+6 equation:
6-8x=-5x+6
We move all terms to the left:
6-8x-(-5x+6)=0
We get rid of parentheses
-8x+5x-6+6=0
We add all the numbers together, and all the variables
-3x=0
x=0/-3
x=0
Step-by-step explanation:
Answer:
Infinitely many solutions
Step-by-step explanation:
When the solved system has the same number on each side, the system has infinite solutions.
Answer:
C. 14
Step-by-step explanation:
F(x) = ∫₀²ˣ √(t³−15) dt
Use second fundamental theorem of calculus:
F'(x) = √((2x)³−15) d/dx (2x)
F'(x) = 2 √(8x³−15)
Evaluate at x=2:
F'(2) = 2 √(8×2³−15)
F'(2) = 2 √(64−15)
F'(2) = 2 √49
F'(2) = 14
Answer:
28:35, which in fraction form is 28/35, but simplified is 4/5 or 4:5
Step-by-step explanation:
Remember: xᵃ. xᵇ = xᵃ⁺ᵇ
and (xᵃ)ᵇ = xᵃᵇ
For easy understanding, let's solve each parenthesis separately, starting with the numerator: (you start eliminating the external parenthesis
:((a³ • b⁵)⁸)¹/² • (a² • c³)⁵ • (c⁵ • b) ⁻² • a³
((a³ • b⁵)⁸)¹/² = (a³ • b⁵)⁴ = a¹² • b²⁰ (1)
(a² • c³)⁵ = a¹⁰ • c¹⁵ (2)
(c⁵ • b) ⁻² • a³ = c⁻¹⁰ • b⁻² • a³ (3)
Now (1).(2).(3) = (a¹² • b²⁰) . (a¹⁰ • c¹⁵).( c⁻¹⁰ • b⁻² • a³)=
a¹²⁺¹⁰⁺³.b²⁰⁻².c¹⁵⁻¹⁰ = a²⁵.b¹⁸.c₅ (4) . ((4) is the numerator simplified)
Let's proceed the same way with the denominator:
(a³ • c⁻¹)⁻⁵ • (b²)⁻⁷• ((b⁴ • a⁵)²⁴) ¹/³
(a³ • c⁻¹)⁻⁵ = a⁻¹⁵.c⁵ (5)
(b²)⁻⁷ = b⁻¹⁴ (6)
((b⁴ • a⁵)²⁴) ¹/³ = (b⁴ • a⁵)⁸ = b³².a⁴⁰ (7)
Now (5).(6).(7) = (a⁻¹⁵.c⁵).(b⁻¹⁴).(b³².a⁴⁰) =
a⁻¹⁵⁺⁴⁰.b⁻¹⁴⁺³².c⁵ =
a²⁵.c¹⁸.c⁵ (8) ((8) is the denominator simplified)
At last (4)/(8) = a²⁵.b¹⁸.c⁵ / a²⁵.c¹⁸.c⁵ =1 Since numerator = denominator