Answer:
The correct answer is: 1.316 . 10⁻³ m³/kg.
Explanation:
The density (ρ) of a substance is the ratio of its <em>mass (m)</em> to its <em>volume (V)</em>. At constant temperature and pressure, its value is constant and it is an intrinsic property of materials. The units of density are kg/m³.

The specific volume (ν) of a substance is the ratio of its <em>mass</em> to its <em>volume</em>. We can see that it is the reciprocal of density and an intrinsic property of matter as well. Therefore, the units of specific volume are m³/kg.

Given we know the density of the liquid, we can use this relationship to find out its specific volume:

Warm air can “hold” more water vapor than cool air because as the air warms its molecules move farther apart, making room for more molecules. This leads to the idea that as air cools its molecules move closer together, “squeezing” out water vapor.
We are given with the equilibrium constant of acid, HF and is asked to calculate the pH of 0.30 M NaF solution. The formula to be followed is
Ka = [H+][F-]/[HF]Ka = 7.2 x 10 -4 = x^2/[0.3-x]x = [H+]= pH = -log (H+) = 1.84
Answer:
Remaining the same
Explanation:
By the Lavoisier's principle the matter can't be created nor destroyed, but always transformed.
It means that in an ecosystem, the matter, and also the energy, is not increasing and not decreasing, the total amount remains the same, but in different forms.
- Answer: <em><u>The compounds containing CFCs (chlorofluorocarbons) are mainly responsible for ozone layer depletion as these compounds react with ozone in the presence of ultraviolet rays to form oxygen molecule and thus, destroying ozone.</u></em>
Explanation: <em><u>Human activities cause the emission of halogen source gases that contain chlorine and bromine atoms. These emissions into the atmosphere ultimately lead to stratospheric ozone depletion. The source gases that contain only carbon, chlorine, and fluorine are called chlo- rofluorocarbons usually abbreviated as CFCs.</u></em>