This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
Answer:
4 M
Explanation:
Molarity can be represented by the following ratio:
Molarity = moles / volume (L)
Since you have been given both the mass and volume, you can plug the values into the equation and solve for molarity.
Molarity = moles / volumes
Molarity = 2.0 moles / 0.50 L
Molarity = 4 M
Answer:
Double replacement reaction.
Explanation:
The Na and Ag atoms both (double) trade places (replacement) with each other.
Answer:
Option A
Explanation:
Emma creates a pressure difference allowing the fluid to flow
Answer:
147.2g
Explanation:
The full solution can be found in the image attached. Graham's law was applied to the problem. The rate of diffusion of a gas is inversely proportional to its molar mass or vapour density. Molar mass= 2vapour density