Answer:
B: Inserting a gene from a flounder into salmon DNA to produce antifreeze proteins.
Explanation:
Hope this helps.
The symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
For writing the electronic configuration of any element by using the preceding noble gas configuration, we simply use the symbols of noble gas belongs to the previous period of that particular elements. We can't use the symbol of noble gas of same period from which the element belong.
A is the wrong option because the noble gas in the preceding period to the period from which antimony belongs is krypton.
The actual electronic configuration of antimony is as follow:
[Kr] 4d10 5s2 5p3
B is correct option because the noble gas in the preceding period to the period from which Cesium belongs is Xenon.
The actual electronic configuration of Cesium is as follow:
[Xe] 6s1
Thus, we concluded that the symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
learn more about Noble gas:
brainly.com/question/2094768
#SPJ4
Answer:

Explanation:
When calculating an empirical formula from percentages, assume you have a 100g sample. This allows you to convert the percentages directly to grams, because X % of 100g is X grams.
So:
24.42 % = 24.42 g Ca, 17.07% = 17.07g N, 58.5% = 58.5g O
The next step is to divide each mass by their molar mass to convert your grams to moles.
24.42/40.08 = 0.6092 mol
17.07/14.01 = 1.218 mol
58.85/15.99 = 3.680 mol
Then you will divide all of your mol values by the SMALLEST number of moles. This gives you whole numbers that are the mole ratio (subcripts) of the empircal formula.
0.6092 mol/0.6092 mol = 1
1.218 mol/0.6092 mol = 2
3.680 mol/0.6092 mol = 6
So the empirical formula is 
The term formula units means molecules.
Then, what you are looking for is the mass in 4.59*10^24 molecules.
The procedure involves to convert the 4.59 * 10^24 molecules into moles and use the molar mass of the sodium chloride.
1) Number of moles = 4.59 * 10^24 molecules / (6.02 * 10^23 molecules/mol) = 7.62 mol
2) Molar mass of NaCl = 22.99 g/mol + 35.45 g/mol = 58.44 g/mol
3) mass of NaCl = molar mass * number of moles = 58.44 g/mol * 7.62 mol = 445.31 g of NaCl
Answer: 445.31 g of NaCl.