<h3>
Answer:</h3>
9 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 6H₂ + O₂ → 3H₂O
[Given] 18 mol H₂
[Solve] mol H₂O
<u>Step 2: Identify Conversions</u>
[RxN] 6 mol H₂ → 3 mol H₂O
<u>Step 3: Stoich</u>
- [DA] Set up conversion:
- [DA] Simplify:
- [DA] Divide [Cancel out units]:
<span>J.j thomson a british physicist was the first to identify the electron in 1987</span>
Webb has calculated the percent composition of a compound. He can check his result by adding them to see if they equal up to 100. Why? Well, percent composition tells the quantity of elements with 100 as a base of total amount. This means that it will have to add to 100 to check the result. You would add up all of the values of percent composition of elements to see if they equal 100, and if they do, the results are accurate.
Your final answer: Webb can check his result by seeing if they add up to 100, considering that is the base total quantity.
Answer:
a. -29.8 kJ/mol-rxn
Explanation:
For a chemical reaction system the forward and reverse rate are equal. The standard molar enthalpy formation of NH3 is -45.9 kJ/mol. For the enthalpy of NH3 (8) the molar enthalpy is -29.8kJ/mol. The molar mass of N2 = 28.02g/mol. Molar enthalpy of formation is standard amount of substance produced in the formation of a reaction. The molar enthalpy is the change in enthalpy due to reaction per mole.